Coal Power Generation in India and its Role in Economic Efficiency

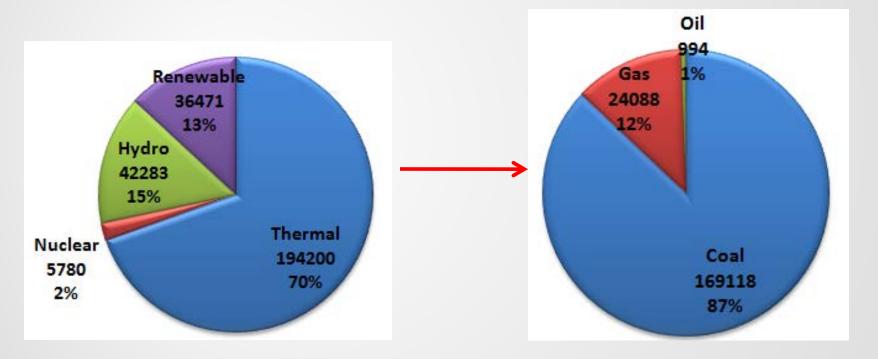
Symposium on Sustainable Power Supply Mix in the Future

Prosanto Pal The Energy and Resources Institute, India

20 November 2015 Bangkok

Outline

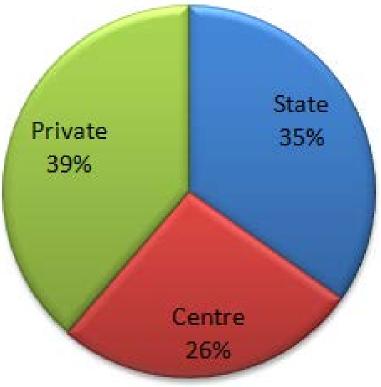
- Power sector in India
- Coal supply
- Generation technologies



Power sector in India – An overview

Power generation mix in India

- Thermal based power accounts for 70% of total generation
- Coal accounts for more than 80% of thermal mix



- Per Capita Consumption- 870 kWh/Yr is very low
- Overall deficit 3.6%; Peak deficit 4.7%

Generation capacity

- Installed capacity (2015) : 280,000 MW
- Capacity doubled in 8 years
 - 140,000 MW (2007)
 - Average annual growth rate : 8.5%
- Average capacity addition was 22,000 MW per year in last 4 years

Sector-wise mix

Planned capacity additions till 2017

Thermal 50,000 MW; Hydro 7,200 MW; Nuclear 1,500 MW

NTPC Barh (2 X 660 MW) Bongaigaon Mauda	1320 MW 750 MW 660 MW
IL&FS Tamil Nadu, Cuddalore Phase 1 (2 X 600 MW) Phase 2 (3 X 800)	1200 MW 2400 MW
Maharashtra State Power Generating Co Kordi Chandrapur Parli	1980 MW 500 MW 250 MW
Prayagraj Power Generation Co, Bara, UP (3 X 660)	1980 MW
UP Rajya Vidyut Nigam Obra (2 X 660) Anpara Unit II	1320 MW 500 MW
KSK Mahanadi, Akalatara, Chhattisgarh Unit III & Unit IV(2 X 600)	1200 MW

Ultra mega power projects (UMPP)

Completed projects

- Tata Power, Mundra, Gujarat (5 X 800 MW) : 4000 MW
- Reliance Power, Sasan, MP (6 X 660) MW) : 3960 MW

Under construction/Awarded

- Reliance Power, Krishnapatnam, AP (5 X 800 MW) : 4000 MW
- > Tilaiya (Jharkhand)
- Bidding process for 4 more units will be announced during the financial year
- The Government of India is focusing on setting-up of 16 UMPPs with supercritical parameters
- Installed generation capacities of 4000 MW per unit
- UMPPs are located either in pithead (domestic coal) and coastal (imported coal)

Issues with other planned UMPPs

- Out of 16 proposed UMPPs, each of 4000 MW only 4 were awarded since 2005-06
- Most proposals stalled due to:
 - Delays in land acquisition
 - Policy changes envisaged
 - Coal linkage (assured fuel supply commitments from the government)
 - Swaping of coal among power plants to optimise transportation costs
 - New tariff policies formulated proposes mandatory bidding process and differential tariffs
 - Bidding norms and coal linkages are being finalised

Coal supply

Domestic production of coal

- Largest energy source; domestic production ~ 570 million tonnes
 - Proven reserves 126 billion tonnes
 - Open casting mining predominant
 - Indian coal has high ash content, variations in calorific value and presence of extraneous matter
- Domestic production not keeping-up with demand due to:
 - Mining constraints (techno-economic viability)
 - Infrastructure bottlenecks
 - Environmental regulations

Coal Quality

High ash content & low calorific value of coal

Low sulphur content

Description (Source/Type)	Unit	Design Coal	Worst Coal	Best Coal
Proximate Analysis				
Fixed Carbon	%	26.00	23.00	32.00
Volatile matter	%	19.00	18.00	22.00
Moisture	%	15.00	17.00	12.00
Ash	%	40.00	42.00	34.00
Total	%	100	100	100
HHV	kcal/kg	3300	2800	4000
Ultimate Analysis				
Carbon	%	31.37	28.93	40.08
Hydrogen	%	3.40	2.40	3.50
Sulphur	%	0.40	0.5	0.36
Nitrogen	%	1.5	1.45	1.78
Oxygen(difference)	%	7.75	7.26	8.03
Moisture	%	15.0	17.0	12.0
Ash	%	40.0	42.0	34.0
Carbonates + Phosphorous	%	0.58	0.46	0.25
Hard Grove Index		55	50	60

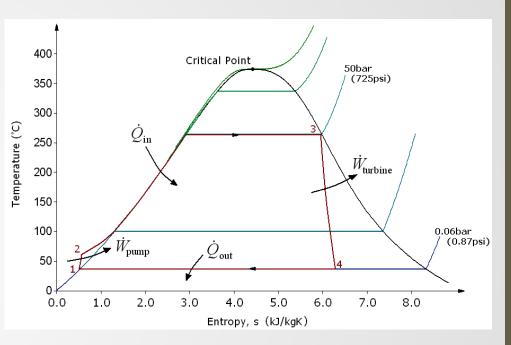
Coal imports

Large quantities imported (~ 220 million tonnes)

- Major imports from Indonesia, South Africa and Australia
- Only 10-15% imported coal can be in existing boilers
- Projected to increase to 900 million tonnes in 2030

Coal washing

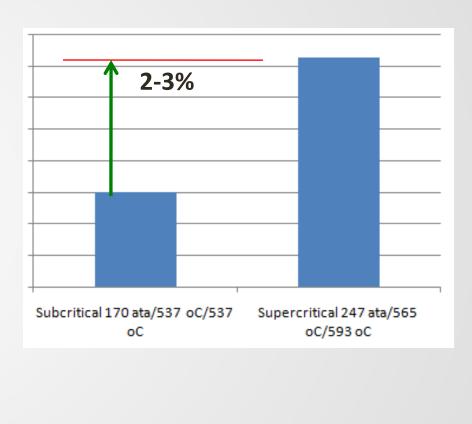
- Washing requires especially before transporting long distances
 - Current capacity 145 million tonnes
- Need for capacity additions
 - No significant increase in recent years
- Need for improvement in washing technologies
 - Problems of wet coal to power plants



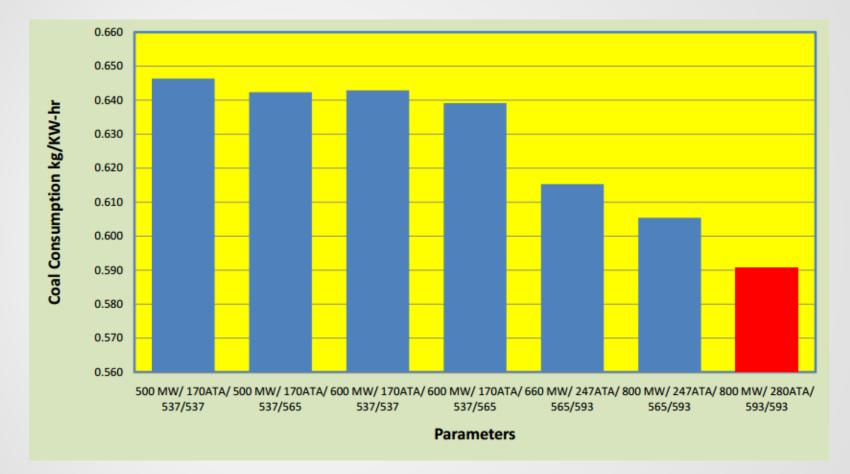
Generation technologies

Supercritical Steam Cycle Technology

- More than 600 supercritical coal fired boilers in operation worldwide.
- Prevalent cycle parameters :
 - Pressure 246 to 250 kg/cm²
 - Temp 538 °C to 600 °C
- Preferred steam parameters include high steam temp (566 to 593 °C) depending upon site specific techno economics.
- Increase in pressure and main & reheat temp more than 537 °C leads to significant improvements in heat rate

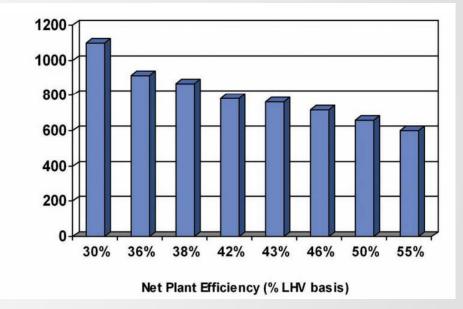

SUPER CRITICAL STEAM PARAMETERS: PARAMETERS MORE THAN CRITICAL STATE

- STEAM PRESSURE > 221.2 BAR
- STEAM TEMPERATURE > 374.15 Deg C


Advantages of supercritical steam cycle technology

- Supercritical units have higher plant efficiencies than subcritical units because of higher steam parameters
- Gross plant efficiency of supercritical units are around 40-41% compared to 38% of subcritical based units
- Gross plant efficiency of ultrasupercritical units are around 41-42% (280 ata/593 °C/593 °C)
- At international level, Advanced ultra-supercritical units have reached plant efficiencies of 47-49%

Fuel saving



Reduced fuel costs due to improved plant efficiency

Other advantages

- Significant improvement of environment by reductio in CO₂ emissions CO₂ Emissions (g/kWh)
- Plant costs less as compa to other clean coal technologies
- Much reduced NOx, SOx and particulate emissions

Evolution of coal based plants in India

Period	1960s	1970s	1977	1983	Under
					Constrn.
Unit Size (MW)	60-100	110-120	200-250	500	660-800
Turb Inlet Pressure	70-90 ata	130 ata	130 ata	170ata	247 ata
/ Temp	490-535 ⁰ C	535 ⁰ C	537 ⁰ C	537 ⁰ C	537 ⁰ C
Reheat Temp.	No reheat	535 ⁰ C	537 ⁰ C	537 ⁰ C	565 ⁰ C
Turbine Cycle Heat	2370	2060 to	1965	1945	1900
rate (kCal/kWh)		2190			
Gross efficiency (%)	30.5	33 to 35	37.2	37.6	38.5

Future outlook

- Coal will continue to have maximum share towards installed capacity for power generation in India
- Clean Coal Technologies such as supercritical, ultra supercritical and advanced ultra supercritical system will be the focus in future power projects
- 800-1000 MW unit plants more suitable to handle Indian coal but technology cooperation with international manufacturers

Thank you for your attention

prosanto@teri.res.in

