Lessons Learned from Thailand's Solar PV Roadmap Initiative

Sopitsuda Tongsopit, Ph.D. 22 April 2015

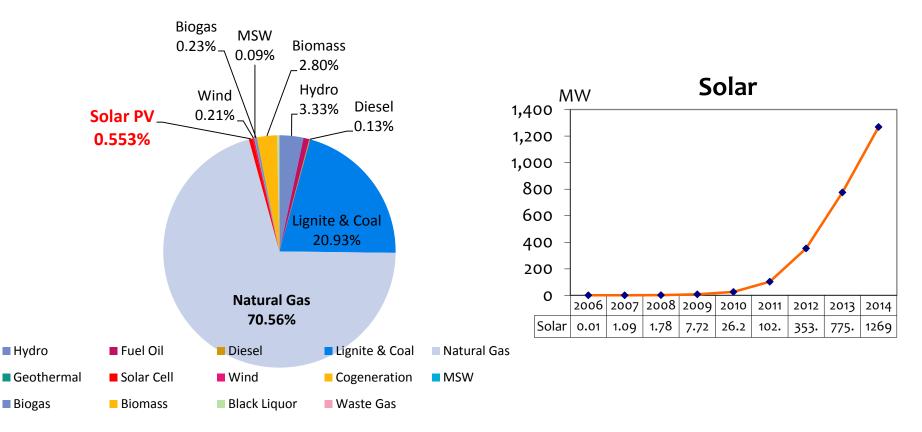
British Embassy Bangkok

Department of Alternative Energy Development and Efficiency MINISTRY OF ENERGY

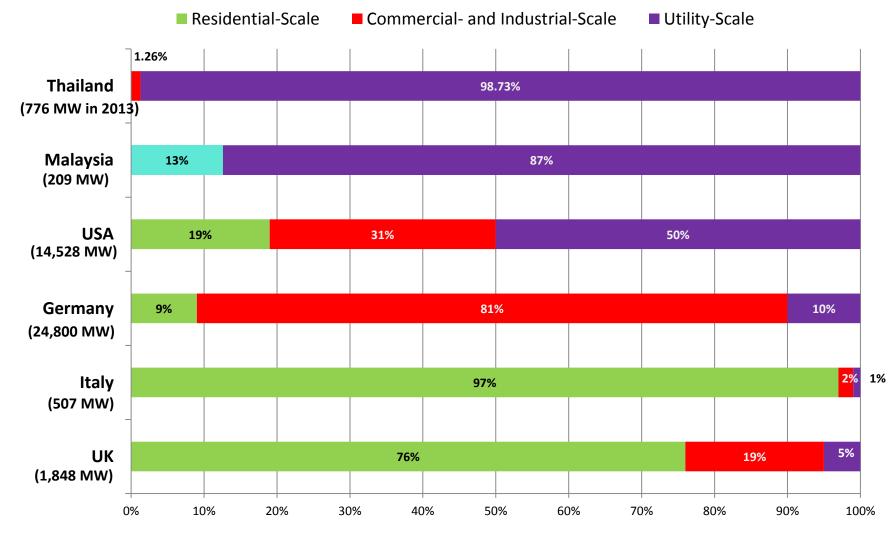
To contribute to the expansion of Thailand's rooftop solar power market through the production of Thailand's Solar PV Roadmap.

YEAR 2 To analyse the feasibility of innovative business models and smart pricing options for solar photovoltaics (solar PV)

Solar PV Scenarios to 2035, Development Objectives, and Action Plans 31 March, 2014 Novotel Bangkok on Siam Square



Share of Generation by Fuel in 2013 (MWh)



Total Generation = 168,478 GWh

Share of renewables in total share of MWh = 4% (Excluding Hydro)

Source: Department of Alternative Energy Development and Efficiency

On-Grid Solar Power in Different Countries by Scale of Installations

Notes: status at various dates---UK (March, 2014); Italy (July, 2014), USA (first half, 2014); Malaysia (Jan 2014); Thailand (Dec 2013); Germany (2011)

Thailand's Solar PV Roadmap Initiative 5 Seminars and 4 Workshops

Thailand's Solar PV Roadmap Initiative 5 Seminars and 4 Workshops

Thailand's Solar PV Roadmap Initiative

Strategies

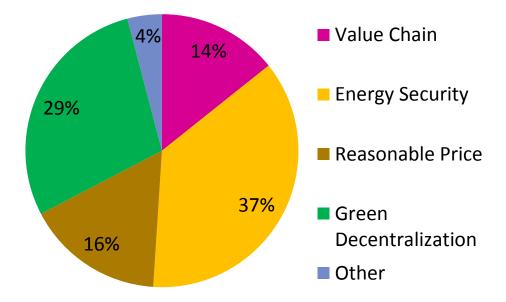
3 Scenarios

Benefits

Vision Targets Barriers

VISION

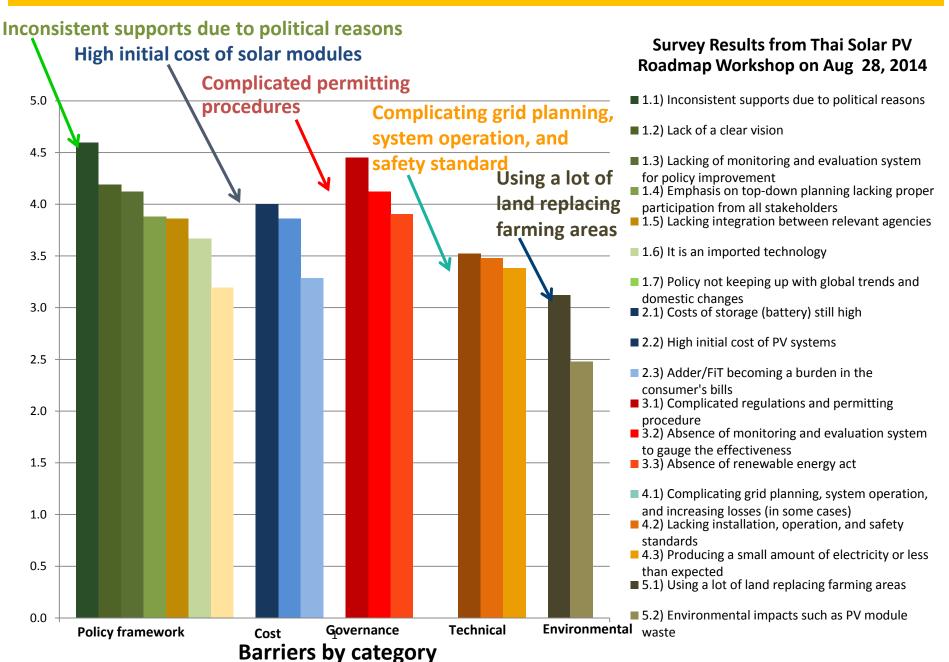
Which of these elements of Thailand's solar power development do you think should be included in the Solar PV Roadmap Vision?


1) Value Chain – Thailand becomes the ASEAN leader in the Solar PV Value Chain

2) Energy Security Thailand is able to decrease reliance on natural gas for power generation through Solar PV.

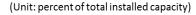
3) Reasonable Price Thailand is able to achieve a balanced energy mix at a reasonable price with high reliability of the electric grid system.

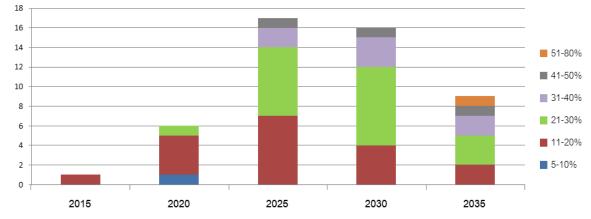
4) Green Decentralization Households and businesses can increase their energy self-reliance by choosing their power sources, either through self-generation or buying from greener power options.


Solar PV enhances energy security through the decentralization toward green power sources and the reduction of dependence on fossil fuels.

Note: Voting results from 65 participants

"Solar PV enhances energy security through the decentralization toward green power sources and the reduction of dependence on fossil fuels."


The survey about barriers in Thailand's solar PV development were conducted three times during the participatory workshops.

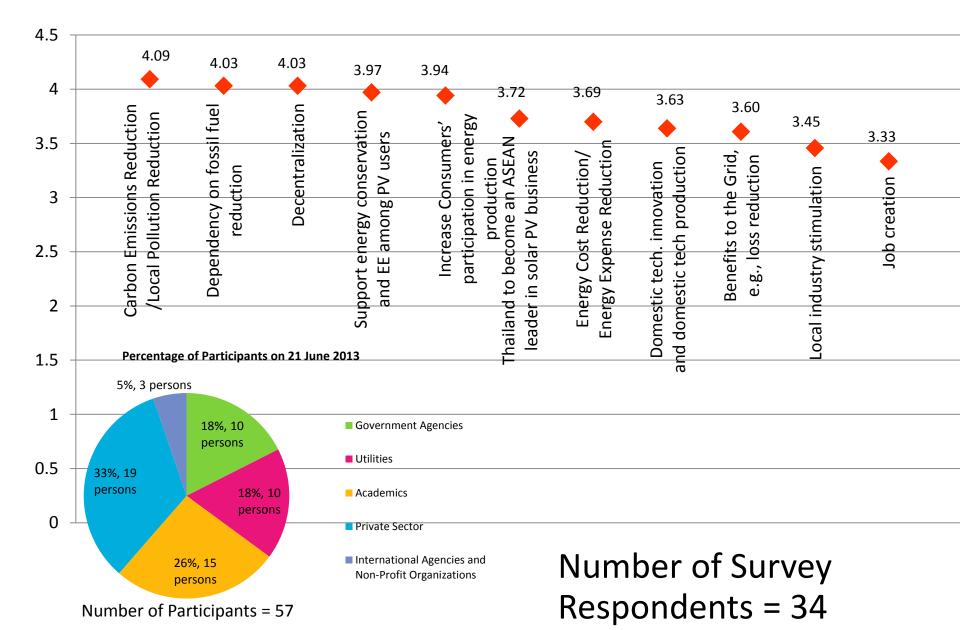

What is the target for solar power electricity that you think is appropriate by the year 2035?

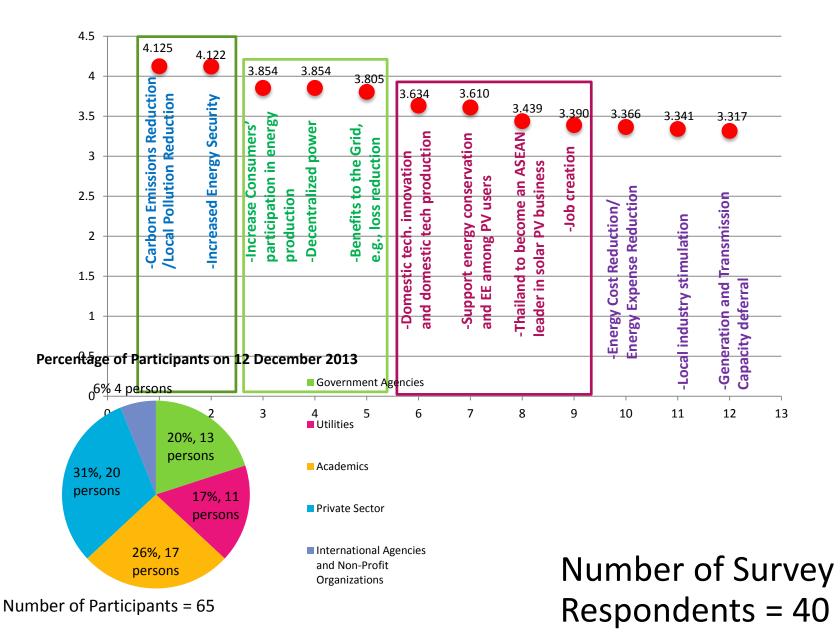
Solar Target Chosen

Voting results: Targets Vs. projected years

- At the end of 2020, the expected target is 10%.
- At the end of 2025, the expected target is 20%.
- At the end of 2035, the expected target is 30%.

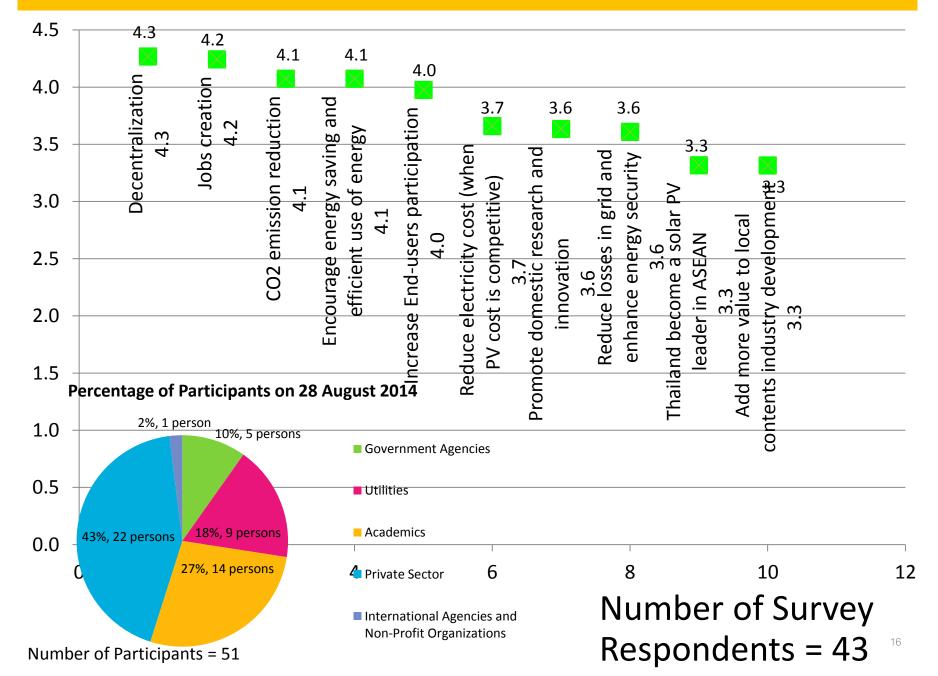
Note: In 2013, solar installed capacity amounts to 2 percent of the total installed capacity.


Notes:

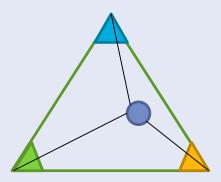

In 2013, solar installed capacity amounts to 2 percent of the total installed capacity. By 2021, the government's 3,000 MW target will amount to 5.7% of the total installed capacity.

BENEFITS

 Based on the same survey mentioned earlier, conducted 3 times, the <u>expected benefits</u> of solar PV were voted


- Top three benefits are:
 - Reducing CO₂ emission, air pollution
 - Easing the dependent upon fossil fuels
 - Decentralization of power generation sources

15


Survey Results from Thai Solar PV Roadmap Workshop on August 28, 2014

Thailand's Solar PV Roadmap Initiative

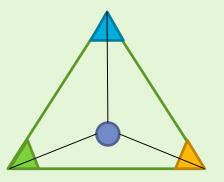
Development of the Three Scenarios to 2035

Effectiveness/ public agencies

- **Competitiveness** /private sector
- **Proactiveness**/ users

Scenario1 **Domestic Market Boom**

- Government provides strong and continuous FiT and BOI privilege.
- •People are highly aware and interested in solar PV •Private sector responds to a fast growing domestic market by providing services at all scales. Manufacturers open new plants in Thailand to serve the growing market.

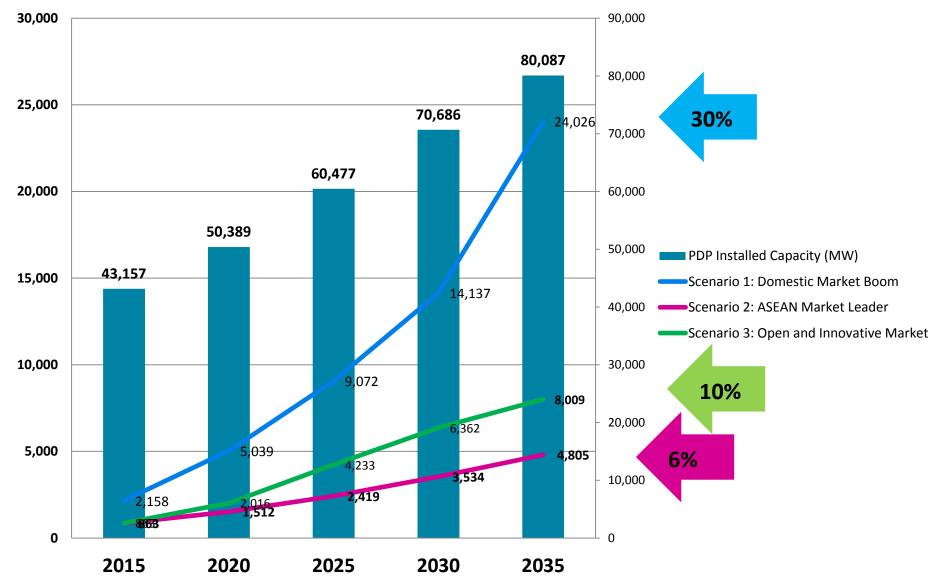


- **Competitiveness** /private sector
- **Proactiveness**

Scenario 2 **ASEAN Market Leader**

•Government limits domestic market due to fear of rate increases. However, the government creates a solar industrial policy in attempt to capture upstream value. •People are moderate consumer awareness Private sector use EPC skills to invest in ASEAN

Effectiveness/ public agencies



Competitiveness /private sector

Proactiveness/ users

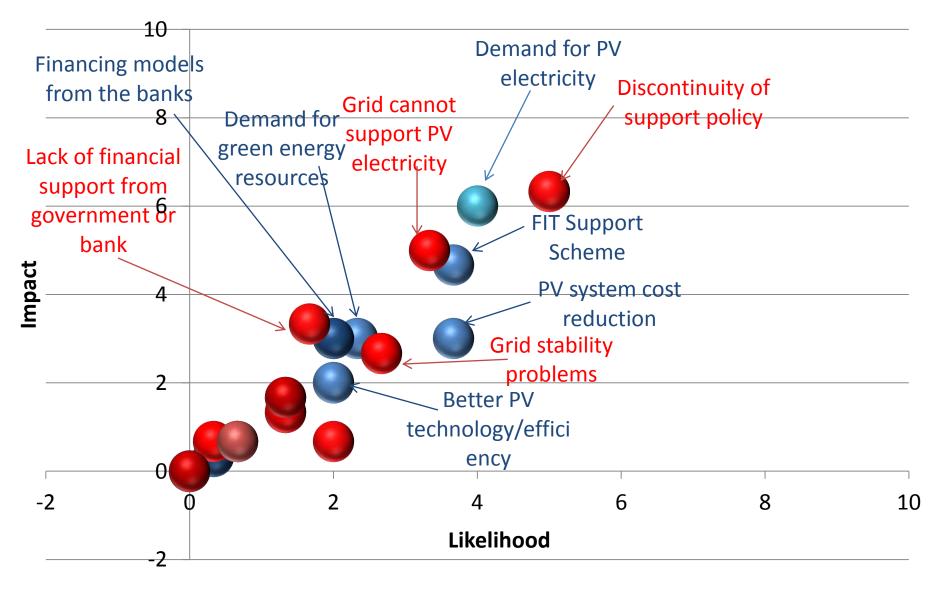
Scenario 3 **Open and Innovative market**

•Government offers no new incentive. However, restriction on grid integration eases due to smart grid technologies. •People are very active and acutely aware of their consumption patterns/behaviors. •Private sector competes with utilities in offering solar electricity at competitive prices. Utilities also begin to offer solar power services

Comparison of 3 Scenarios and Forecasted Installed Capacity (MW)

Total benefits of solar PV installation

Benefits	Domestic Market Boom (High Case)	ASEAN Market Leader (Low Case)	Open and Innovative Market (Moderate Case)
CO ₂ emission reduction (tCO2)	18,703,163.89	3,740,632.78	6,234,387.96
Fossil Fuel Reduction (ktoe)	2,895.54	579.11	965.18
Jobs Creation (Jobs)	70,052.65	15,523.84	17,975.51

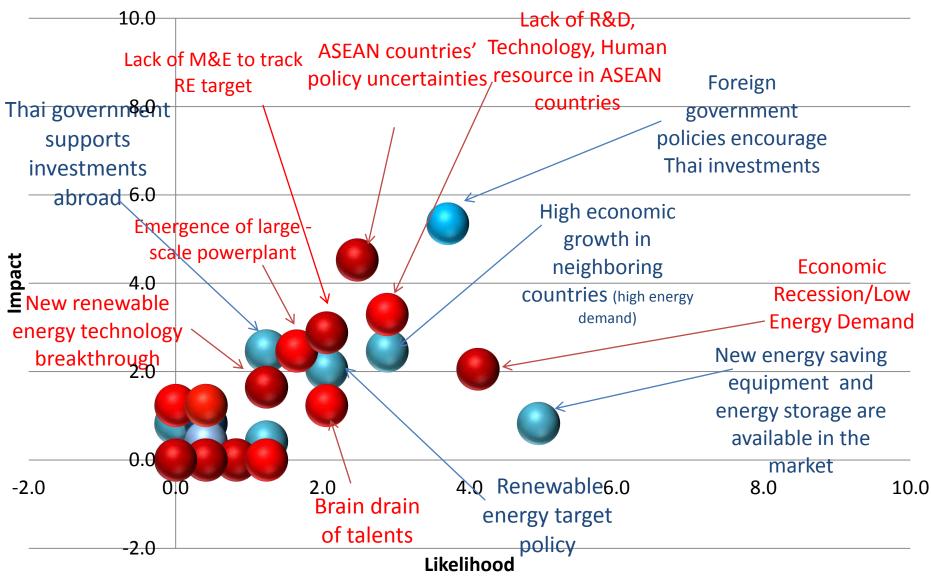

Thailand's Solar PV Roadmap Initiative

Results from Thai Solar PV Roadmap Workshop on Mar 31, 2014

Drivers, Barriers, and Action Plans under Each Scenario

Scenario 1: Domestic Market Boom

Drivers and Barriers

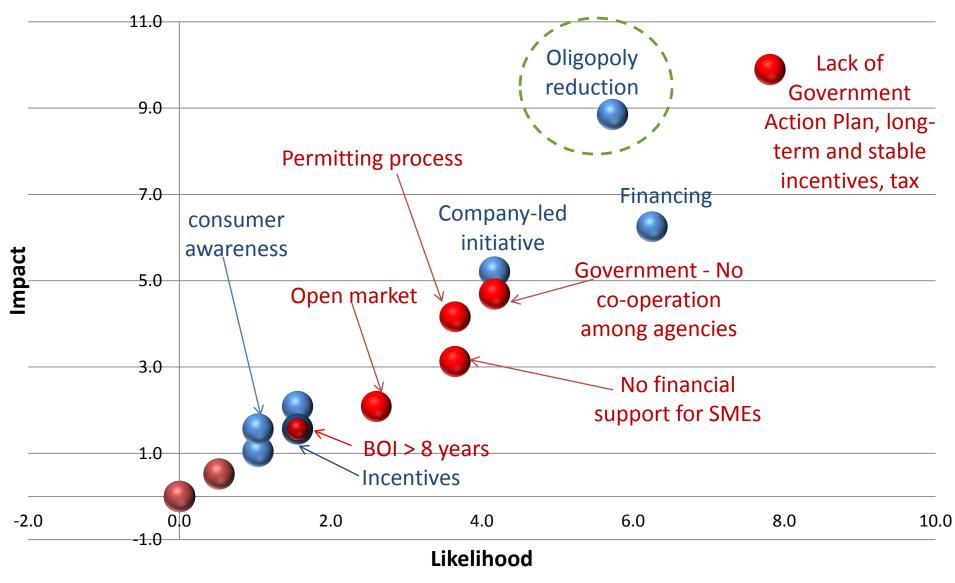

Scenario 1: Domestic Market Boom

Action Plans

Player/ Term	Short term	Medium term	Long term		
Public	EPPO and ERC receive inputs from all relevant agencies, then formulate a plan that synchronizes their responsibilities. They better				
	integrate energy with green environmental plans.				
	-	Design FiT measures to have continuity, and a clear and fixed revision timeline including annual degression rate. Utilities use smart grid			
	technologies to limit the construction of conventional power plants				
			Coordinate RE plans and transmission		
			upgrade/reinforcement plans		
		Campaign for a solid understanding about the			
		benefits of solar energy			
		system is effectively implement to ensure public se			
	ERC implements policies effectively with the purpose of maintaining a balance of power among electricity producers, users, and utilities				
Private	Design innovative products for easier				
	assembling, installation, and				
	maintenance (Do It Yourself) while				
	providing both pre-sale and after sales				
	service of the PV systems as well as				
	campaigning for a solid				
	understanding about the benefits of				
	solar energy				
	Financial institutions formulate new financial models especially to support the investment in solar PV				
End-User	Consumers push the government for m	odules and inverter standards and third-party testir	ng agencies so that consumers can have more		
	confidence on the products.				
	Consumers mobilize the banking sector				
	to create a socially responsible lending				
	policy such as green lending standards				
	End-users try to educate themselves on energy issues and because of the high awareness on energy option and environmental impacts.				
	They seeks out supports from the government and innovative products in the market to reduce household energy cost				

Scenario 2: ASEAN Market Leader

Drivers and Barriers

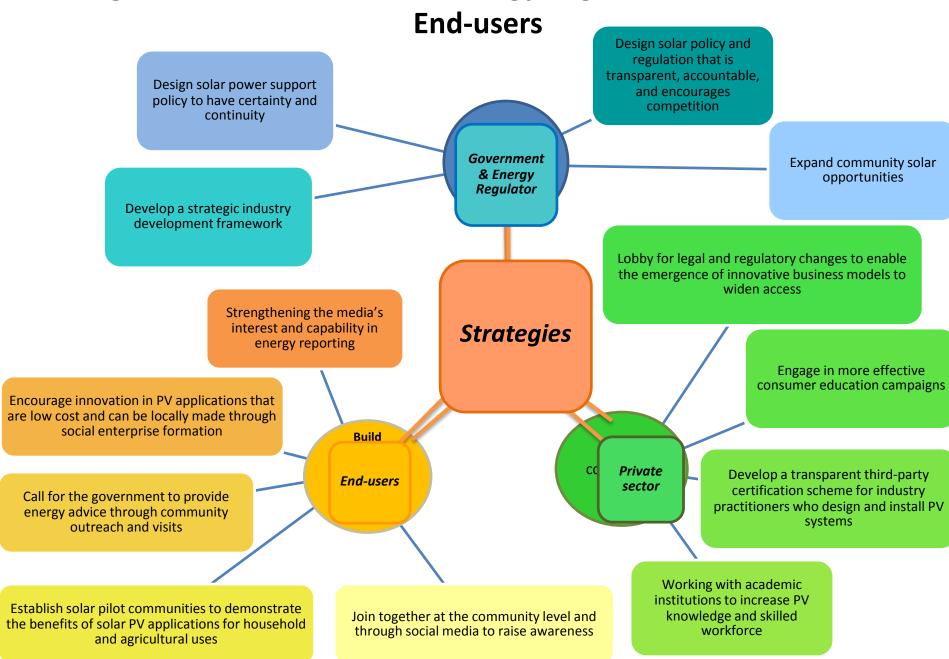

Scenario 2: ASEAN Market Leader

Action Plans

Player/ Term	Short term	Medium term	Long term	
	Draft and Pass a Solar Industrial Policy Push for R&D activitie	Integrate local suppliers into the upstream part of the solar supply chain. es and training focusing on ASEAN applications		
Public	Formulate a Master Plan for ASEAN solar energy investment which contain action plans for governments as the key enabler			
	Build strategic partnerships among private and public players to build a stronghold in ASEAN market.			
	-Public-Private- Collaboration in the capacity building of the solar workforce to serve the	Research output targets are set and solar PV syllabi are developed		
	growing market outside of Thailand.	Expand the negotiation to	-Public-Private- Encourage the	
Private	Build capacity of local suppliers to match with global solar supply chain requirement	the ASEAN level	employment of local people to allow technology transfer	
	Study and analyze business models abroad Solar PV project investment	Develop business models suitable for the investment areas	Scale up the project in new investment areas	

Scenario 3: Open and innovative market

Drivers and Barriers


Scenario 3: Open and innovative market

Action Plans

Player/ Term	Short term	Medium term	Long term
	Lobby to include more stakeholders in NEPC structure		
Public	Establish Thai Photovoltaic Industries Association for lobbying	Incorporate public opinion in every step (Public hearing) (S- M-L)	Increase public awareness through education
	Create a clear simple, and transparent permitting process		Enforce government accountability
Private		Lobby Utilities to create fund or governance bank (Residential)	
	Build demand to create		
	Update and modify information website to be more user-friendly (DEDE)		
End-User	Distribute information related to solar PV to public (How to)		
	ERI to start initiative to increase awareness in solar PV in school through projects		

Strategies for the Government, Energy Regulator and Private sector

Strategies for the Government, Energy Regulator, Private sector and

Design solar power support policy to have certainty and continuity

Installed Capacity	Monthly
During Prior 12-	Degression
month Period	
7,500 MW	2.8%
6,500 MW	2.5%
5,500 MW	2.2%
4,500 MW	1.8%
3,500 MW	1.4%
2,500-3,500 MW	1%
(taret corridor)	
Less than 2,500 MW	0.75%
Less than 2,000 MW	0.5%
Less than 1,500 MW	0%
Less than 1,000 MW	-0.5%

Key Elements for Future Feed-in Tariff Programs for Thailand's Rooftop Solar Support

- No capacity cap for rooftop applications and moderate volume through degression rates or impose an annual cap with a clear policy announcement timeframe
- Use volume-based FiT adjustment mechanism:

Corridor Degression: The degression rate will depend on whether the additional PV capacity is within the corridor. If the deployment in the previous 12 months exceeds the target volume, a higher degression rate would be applied.

Ceiling and Floor Mechanism: The floor level provides assurance to investors and bankers that the project's income streams would be enough to pay back the returns or loans. The ceiling level provides assurance to policymakers that the costs of FiT would not skyrocket and hurt ratepayers.

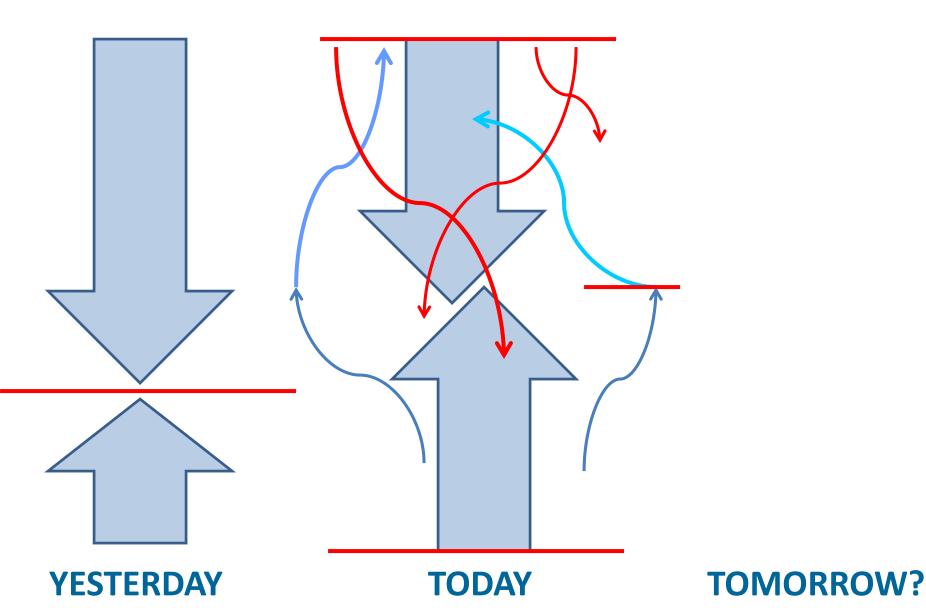
Design Solar Policy and Regulation that is Transparent, Accountable, and Encourages Competition

Policy	Regulation	
 Policy Consultation 	 Eligibility Criteria 	
-Include stakeholders early in the planning stage	- should allow enough flexibility to enable diverse	
and provide effective channels to disseminate	business models and financing options to thrive.	
information and receive feedbacks.	Future regulation should allow for installations on	
-The net benefits to policy options should be	more diverse structures, such as on the building	
calculated and communicated with stakeholders as	façade and on garage roofs.	
a basis to inform decision-making.		
 Policy Announcement 	Related Laws and Regulation:	
-Provide certainty on the future timeframe of	-Ensure that related laws and regulations are	
policy revision and application tender rounds of	amended to reduce barriers	
FiT.	-Coordinate the responsibilities of local, regional,	
	and national agencies in administering solar	
	power support measures.	

3. Design Solar Policy and Regulation that is Transparent, Accountable, and Encourages Competition (cont.)

 Policy Objectives 	 Application Approval Procedures
The objectives for solar power development	-Use an online application process for project
should have corresponding national commitment	qualification screening rather than requiring
or plans.	applicants to apply in person.
	• Simplified and streamlined process for small-
	scale residential systems less than 10 kW.
 Policy Support Mechanisms 	Contract details
-Implement adequate measures to achieve solar	- Contract Term: Future Standardized PPAs for solar
policy objectives	farms and community solar should last as long
	as the payment (and not revert back to the
	original SPP and VSPP's SPPAs).
	- Solar Power as "Must-Take" Capacity: A "Must-
	Take" clause would ensure that solar electricity
	that is injected successfully into the grid will be
	paid for.

Thailand's Solar PV Roadmap Initiative Outputs


Stakeholders' Solar PV Roadmap (in English)

VAR Pricing		Solar Crowdfunding	
Handbook		Handbook	
(in Thai)		(in Thai)	
Briefing	Artic	Post	Academic
Papers	In BKK		Papers
(published)	(publis		(under peer review)

- Aggregate otherwise scattered voices in the solar PV market
- **Systematize** recommendations for future solar PV development
- **Catalyze** the actions of new players to enter the PV market
- **Network** for future cooperation

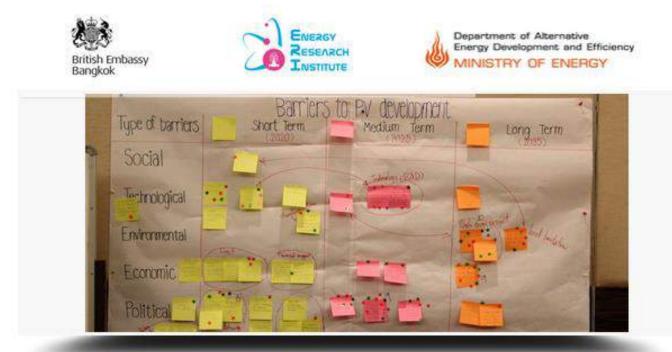
Top-down and Bottom-up Actions

1) What kind of further push do we need that can inform future initiative?

2) How do we mobilize a wider group of the constituency to have a strong support for decentralized generation, including solar PV?

3) What would be impacts on the grid with different levels of DG penetration (including solar)?

4) What kind of benefits of solar PV that we want to materialize? And at what costs?


(What kind of solar PV scenario does the public desire?)

Research

NEXT STEPS

Team

Solar PV Roadmap's Latest Activities

Program 28 Aug 2014 Pictures August 28, 2014 Presentations 20 Jan 2015 Program 20 Jan 2015

Research Updates

A summary of trends in the expansion of solar leasing and solar crowd-funding in the USA and the UK A Review of Business Models for Distributed Solar Power Deployment in the U.S. and Japan: Lessons and Prospects for Thailand Permitting Process: Experiences from other markets.

Media

ERI's article in Bangkok Post Nov 20, 2014 ERI's article in Bangkok Post SEP 15, 2014 Community Solar Incentives in Thailand Stall over Funding Hurdle

The Solar PV Roadmap Initiative is designed to provide a meaningful platform of solar energy discussions among relevant stakeholders. The goal is to increase the awareness and promotion of solar energy to become a significant addition to Thailand's existing energy resources.

How You Can Contribute:

Thai Solar Policy & Regulatory Activities

Creating knowledge base on solar power in the developing country' context.

Dr. Sopitsuda Tongsopit

Affiliation: Energy Research Institute, Chulalongkorn University

Interest: I would like to help catalyze the expansion of the rooftop solar market so that solar power becomes not just an alternative source of power production but a tool for empowering change.

Bio: Researcher in the Energy Research Institute based in Bangkok, Thailand. Her 2012 book explores the changing technical and regulatory landscape of the electric power grid in an age when distributed energy such as solar systems are gaining prominence in the world's energy mix.

Surachai Chaitusaney

Affiliation: Chulalongkorn University

Interest: Applications and Impacts of Solar PV Generation Systems and the different implementations the government could promote. Bio: In 2007, Surachai Chaitusaney obtained his Ph.D. degree from the University of Tokyo, Japan, with JICA scholarship. At present, he is a lecturer at Department of Electrical Engineering, Chulalongkorn University.

Nnah Kittner

Affiliation: UC Berkeley

Interest : I would like to see more ambitious targets beyond 2 GW by 2020 and longer term strategies to feed solar PV into the grid. Bio: Graduate student in the Energy and Resources Group at UC Berkeley. Previously, he had a Fulbright fellowship in Thailand investigating technical and policy options for reducing greenhouse gas emissions by using solar electricity. He also has conducted research on biomass fuels at the Carolina Population Center, installed off-grid solar panels in rural Mexico and analyzed deforestation trends in Uganda. He holds a BS in Environmental Science from the University of North Carolina at Chapel Hill.

Pimiai Hoentrakul

Affiliation: Environmental Resources Management (ERM) consulting

Interest: I am interested to see solar PV technology adoption in the residential and commercial sectors serve as a driver for transforming Thailand's energy infrastructure into a more sustainable and cleaner system.

Bio: Consultant with ERM. She has a background in mechanical engineering and energy technologies and policies. Her prior experiences include the United States Department of Energy, the University of Texas at Austin IC2 Institute, and the United Nations Economic and Social Commission for Asia and the Pacific.

David Arturo Teran

Affiliation: Energy Research Institute, Chulalongkorn University

Interests: Motivating progressive discussion and implementation of renewable energy's, with a focus on solar PV technology and waste to energy adoption stimulated by a grass roots movement.

Bio: B.A in International relations at Universidad San Francisco de Quito and currently is a graduate student in the Environment, Development and Sustainability program In Chulalongkorn University. Currently is a Researcher Assistant in the Energy Research Institute based in Bangkok, Thailand.

Apinya Aksomkij

Affiliation: Energy Research Institute, Chulalongkorn University Interests: I would like to see the growth of Thai solar PV development in residential and commercial sectors which will be the potential solution to move towards sustainability.

Bio: She obtained M.A in Energy Technology from Asian Institute of Technology and currently working as Research Assistant in the Energy Research Institute, Chulalongkorn University.

Morakut Tussabanyad

Affiliation: Energy Research Institute, Chulalongkorn University Interest: I am interested in seeing rapid deployment of renewable energy, especially solar power, in Thailand Bio: Research assistent in the Energy Research Institute of Chulalongkorn University, based in Bangkok, Thailand. She has a B.E. in Environmental Engineering and an M.E. in Energy Management Technology, King Monkut's University of Technology Thonburi.

Supot Chunhachoti-ananta

Affiliation: PhD candidate at Environment, Development, and Sustainability program, Chulalongkorn University Interests: small scale/community-based/decentralised renewable energy development; multistakeholder dialogue/deliberation towards policy and partnership development in urban clean energy transition.

Bio: Academic backgrounds in environmental science and management, ecotourism, and renewable energy. Work experiences include natural resource management, alternative economic development, teaching undergrads, and community-based biogas project.

Thank you tongsopit@gmail.com

Benefits Calculation: Jobs creation

$$Jobs_t = \sum_i P_{i,t} \cdot I_{i,t}$$

(1)

where

- i is each considered link in the supply chain
- $I_{i,t}$ is the employment intensity for a given stage i into the supply chain
- *P_{i,t}* is the referred MW for the stage i (installed MW for stages related with manufacturing, cumulated MW for O&M stages and manufactured MW for component manufacturing stages)

$$I_{i,t} = I_{i,base} \left(\frac{Cumulated MW_{i,t}}{Cumulated MW_{i,base}} \right)^{-\infty}$$
(2)

where $I_{i,base}$ is the employment intensity and $MW_{i,base}$ is the cumulated power for a given stage i empirically obtained and the subindex t means the time when this intensity has been evaluated. The exponent α is a correction factor related to the learning curve of the studied technology.

Source: E. Llera, et al. (2013)

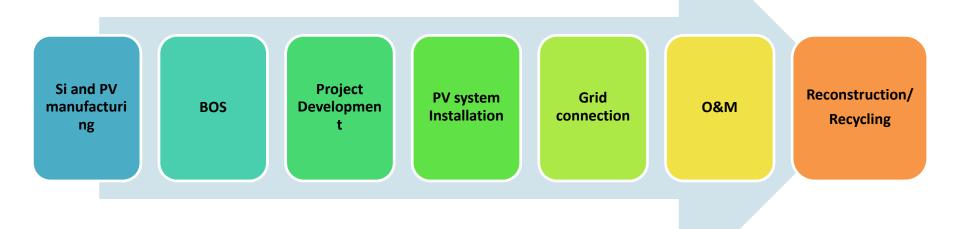
Stage	ا (using 2007 data from Spain)	Fitting parameter related with learning rates (α): Spanish case		
Projects/studies	0.83	0.56		
Silicon	1.26			
Cells	3.09			
Module assembly	11.59	0.15		
Solar tracker	8.15			
Inverter	3.32			
Installation	15.25	0.56		
Operation	3.3	0.42		

Benefits Calculation: Assumptions

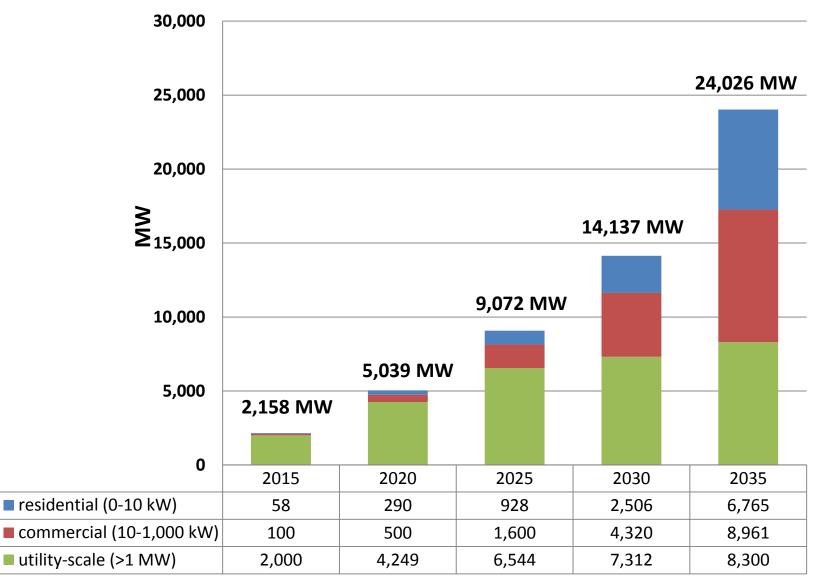
CO2 emission reduction

EFgrid, CM	=	Combine margin CO2 emission factor in year				
-	=	0.56	tCO2/MWh			
Source:	TGO (2010)	http://conference.tgo.or.th/download tgo_or_th/publication/GEF/2009/GEFF eport_ENrevise1.pdf			

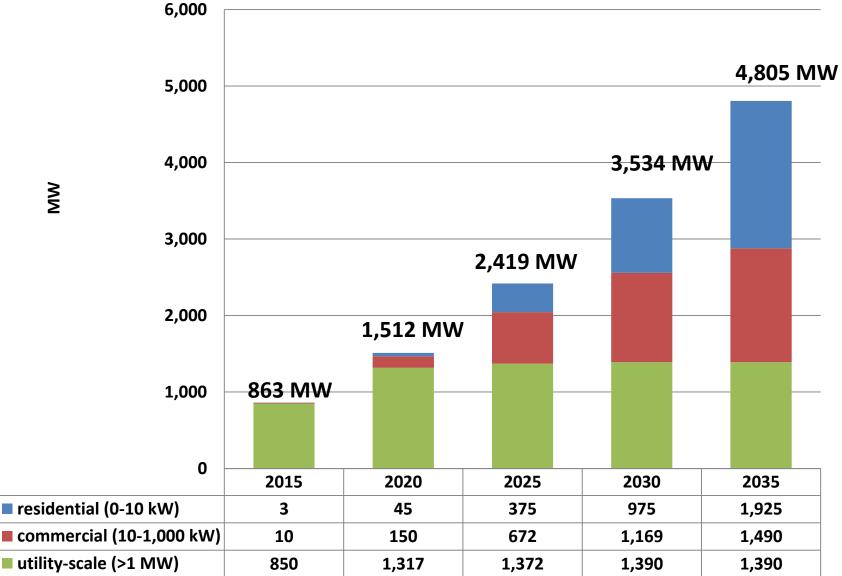
Note:


EF_{grid, CM} =Combine margin CO2 emission factor in year y ค่าถ่วงน้ำหนักระหว่าง Operating Margin กับ Build Margin

Fossil Fuel conversion							
	1	MWh	=	8.6E-05	ktoe		
	Source :	IEA	http://www.iea.org/statistics/resources/unitconverter/				

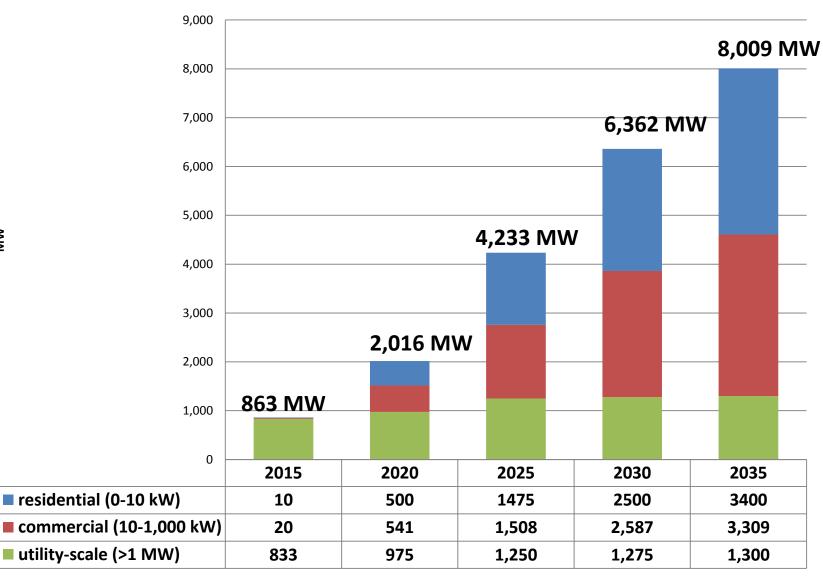

Assumptions on Growth Rate of the Three Scenarios

Growth Rat	te Assumptions (%)							
			2015	2020	2025	2030	2035	
1	Domestic Boom	gov+users	5%	10%	15%	20%	30% h	nigh
2	ASEAN leader	gov+private sector	2%	3%	4%	5%	6% k	wc
3	Open and Innovative Ma	private sector +user	2%	4%	7%	9%	10% n	noderate
PDP Instal	PDP Installed Capacity (MW)		43,157	50,389	60,477	70,686	80,087	
Solar Installed Capacity (MW)translated from % using PDP load assumptions		2015	2020	2025	2030	2035		
1	Domestic Boom	gov+users	2,158	5,039	9,072	14,137	24,026 h	nigh
2	ASEAN leader	gov+private sector	863	1,512	2,419	3,534	4,805 k	wc
3	Open and Innovative Ma	private sector +user	863	2,016	4,233	6,362	8,009 n	moderate


PV System Value Chain

30% of System's Installed Capacity by 2035. Scenario 1: Domestic Market Boom

6% of System's Installed Capacity by 2035. Scenario 2: ASEAN Market Leader



* Note: The above numbers are domestic installed capacities.

MМ

10% of System's Installed Capacity by 2035.

Scenario 3: Open and Innovative Market

Strategies for the Government and Energy Regulator

- 1. Develop a Strategic Industry Development Framework
- 2. Design Solar Power Support Policy to have Certainty and Continuity
- 3. Design Solar Policy and Regulation that is Transparent, Accountable, and Encourages Competition
- 4. Expand Community Solar Opportunities

Strategies for the Private Sector

- Lobby for Legal and Regulatory Changes to Enable the Emergence of Innovative Business Models to Widen access
- 2. Engage in More Effective Consumer Education Campaigns
- Develop a transparent third-party certification scheme for industry practitioners who design and install PV systems.
- 4. Working with academic institutions to increase PV knowledge and skilled workforce

Strategies for End-users

1. Join together at the community level and through social media to raise awareness on renewable energy, energy conservation, and the government's energy policies

2. Establish solar pilot communities to demonstrate the benefits of solar PV applications for household and agricultural uses.

3. Call for the government to provide energy advice through community outreach and visits

4. Encourage innovation in PV applications that are low cost and can be locally made through social enterprise formation

5. Strengthening the media's interest and capability in energy reporting